事务隔离级别

1. 事务特性

  • 原子性(Atomicity):一个事务中的所有操作,要么全部完成,要么全部不完成。
  • 一致性(Consistency):是指事务操作前和操作后,数据满足完整性约束,数据库保持一致性状态。比如A向B转账,数据库不会出现非法状态,如总金额丢失或多出。
  • 隔离性(Isolation):数据库允许多个并发事务同时对其数据进行读写和修改的能力。
  • 持久性(Durability):事务处理结束后,对数据的修改就是永久的,即便系统故障也不会丢失。

InnoDB该如何保证这四个特性呢:

  • 持久性是通过 redo log (重做日志)来保证的;
  • 原子性是通过 undo log(回滚日志) 来保证的;
  • 隔离性是通过 MVCC(多版本并发控制) 或锁机制来保证的;
  • 一致性则是通过持久性+原子性+隔离性来保证;

2. 并行会引发的问题

2.1 脏读

如果一个事务「读到」了另一个「未提交事务修改过的数据」,就意味着发生了「脏读」现象。

例如:

2.2 不可重复读

在一个事务内多次读取同一个数据,如果出现前后两次读到的数据不一样的情况,就意味着发生了「不可重复读」现象。

2.3 幻读

在一个事务内多次查询某个符合查询条件的「记录数量」,如果出现前后两次查询到的记录数量不一样的情况,就意味着发生了「幻读」现象。

3. 事务的隔离级别

上述三个现象的严重排序如下:

SQL 标准提出了四种隔离级别来规避这些现象,隔离级别越高,性能效率就越低:

  • 读未提交(read uncommitted,指一个事务还没提交时,它做的变更就能被其他事务看到;
  • 读提交(read committed,指一个事务提交之后,它做的变更才能被其他事务看到;
  • 可重复读(repeatable read,指一个事务执行过程中看到的数据,一直跟这个事务启动时看到的数据是一致的,MySQL InnoDB 引擎的默认隔离级别
  • 串行化(serializable );会对记录加上读写锁,在多个事务对这条记录进行读写操作时,如果发生了读写冲突的时候,后访问的事务必须等前一个事务执行完成,才能继续执行;

按隔离水平高低排序如下:

3.1 可重复读

MySQL 在「可重复读」隔离级别下,可以很大程度上避免幻读现象的发生(并不是彻底避免)。解决方案有两种:

  • 针对快照读(普通 select 语句),是通过 MVCC 方式解决了幻读,因为可重复读隔离级别下,事务执行过程中看到的数据,一直跟这个事务启动时看到的数据是一致的,即使中途有其他事务插入了一条数据,是查询不出来这条数据的,所以就很好了避免幻读问题。
  • 针对当前读(select … for update 等语句),是通过 next-key lock(记录锁+间隙锁)方式解决了幻读,因为当执行 select … for update 语句的时候,会加上 next-key lock,如果有其他事务在 next-key lock 锁范围内插入了一条记录,那么这个插入语句就会被阻塞,无法成功插入,所以就很好了避免幻读问题。

3.2 四种隔离级别

  • 对于「读未提交」隔离级别的事务来说,因为可以读到未提交事务修改的数据,所以直接读取最新的数据就好了;
  • 对于「串行化」隔离级别的事务来说,通过加读写锁的方式来避免并行访问;
  • 对于「读已提交」和「可重复读」隔离级别的事务来说,它们是通过 Read View 来实现的,它们的区别在于创建 Read View 的时机不同,「读已提交」隔离级别是在「每个语句执行前」都会重新生成一个 Read View,而「可重复读」隔离级别是「启动事务时」生成一个 Read View,然后整个事务期间都在用这个 Read View

3.3 事务的启动

执行「开始事务」命令,并不意味着启动了事务。在 MySQL 有两种开启事务的命令,分别是:

  • 第一种:begin/start transaction 命令:执行了 begin/start transaction 命令后,并不代表事务启动了。只有在执行这个命令后,执行了第一条 select 语句,才是事务真正启动的时机;
  • 第二种:start transaction with consistent snapshot 命令;执行了 start transaction with consistent snapshot 命令,就会马上启动事务。

4. Read View

4.1 Read View构成

  • max_trx_id :这个并不是 m_ids 的最大值,而是创建 Read View 时当前数据库中应该给下一个事务的 id 值,也就是全局事务中最大的事务 id 值 + 1;

假设在账户余额表插入一条小林余额为 100 万的记录,然后我把这两个隐藏列也画出来,该记录的整个示意图如下:

对于使用 InnoDB 存储引擎的数据库表,它的聚簇索引记录中都包含下面两个隐藏列:

  • trx_id,当一个事务对某条聚簇索引记录进行改动时,就会把该事务的事务 id 记录在 trx_id 隐藏列里
  • roll_pointer,每次对某条聚簇索引记录进行改动时,都会把旧版本的记录写入到 undo 日志中,然后这个隐藏列是个指针,指向每一个旧版本记录,于是就可以通过它找到修改前的记录。

在创建 Read View 后,我们可以将记录中的 trx_id 划分这三种情况:

  • 如果记录的 trx_id 值小于 Read View 中的 min_trx_id 值,表示这个版本的记录是在创建 Read View 已经提交的事务生成的,所以该版本的记录对当前事务可见
  • 如果记录的 trx_id 值大于等于 Read View 中的 max_trx_id 值,表示这个版本的记录是在创建 Read View 才启动的事务生成的,所以该版本的记录对当前事务不可见。
  • 如果记录的 trx_id 值在 Read View 的 min_trx_idmax_trx_id 之间,需要判断 trx_id 是否在 m_ids 列表中:
    • 如果记录的 trx_id m_ids 列表中,表示生成该版本记录的活跃事务依然活跃着(还没提交事务),所以该版本的记录对当前事务不可见
    • 如果记录的 trx_id 不在 m_ids列表中,表示生成该版本记录的活跃事务已经被提交,所以该版本的记录对当前事务可见

5. 可重复读是如何工作的

可重复读隔离级别是启动事务时生成一个 Read View,然后整个事务期间都在用这个 Read View

假设事务 A (事务 id 为51)启动后,紧接着事务 B (事务 id 为52)也启动了,那这两个事务创建的 Read View 如下:

接着,在可重复读隔离级别下,事务 A 和事务 B 按顺序执行了以下操作:

  • 事务 B 读取小林的账户余额记录,读到余额是 100 万;
  • 事务 A 将小林的账户余额记录修改成 200 万,并没有提交事务;
  • 事务 B 读取小林的账户余额记录,读到余额还是 100 万;
  • 事务 A 提交事务;
  • 事务 B 读取小林的账户余额记录,读到余额依然还是 100 万;

事务 B 第一次读小林的账户余额记录,在找到记录后,它会先看这条记录的 trx_id此时发现 trx_id 为 50,比事务 B 的 Read View 中的 min_trx_id 值(51)还小,这意味着修改这条记录的事务早就在事务 B 启动前提交过了,所以该版本的记录对事务 B 可见的,也就是事务 B 可以获取到这条记录。

接着,事务 A 通过 update 语句将这条记录修改了(还未提交事务),将小林的余额改成 200 万,这时 MySQL 会记录相应的 undo log, 并以链表的方式串联起来,形成版本链,如下图:

然后事务 B 第二次去读取该记录,**发现这条记录的 trx_id 值为 51,在事务 B 的 Read View 的 min_trx_id 和 max_trx_id 之间,**则需要判断 trx_id 值是否在 m_ids 范围内,判断的结果是在的,那么说明这条记录是被还未提交的事务修改的,这时事务 B 并不会读取这个版本的记录。而是沿着 undo log 链条往下找旧版本的记录,直到找到 trx_id 「小于」事务 B 的 Read View 中的 min_trx_id 值的第一条记录,所以事务 B 能读取到的是 trx_id 为 50 的记录,也就是小林余额是 100 万的这条记录。

最后,当事物 A 提交事务后,由于隔离级别时「可重复读」,所以事务 B 再次读取记录时, 还是基于启动事务时创建的 Read View 来判断当前版本的记录是否可见。所以,即使事物 A 将小林余额修改为 200 万并提交了事务,事务 B 第三次读取记录时,读到的记录都是小林余额是 100 万的这条记录

6. 读提交如何工作

读提交隔离级别是在每次读取数据时,都会生成一个新的 Read View

那读提交隔离级别是怎么工作呢?我们还是以前面的例子来聊聊。

  • 事务 B 读取小林的账户余额记录,读到余额是 100 万;
  • 事务 A 将小林的账户余额记录修改成 200 万,并没有提交事务;
  • 事务 B 读取小林的账户余额记录,读到余额还是 100 万;
  • 事务 A 提交事务;
  • 事务 B 读取小林的账户余额记录,读到余额依然还是 100 万;